190 research outputs found

    Revisiting the Hugenholtz-Van Hove theorem in nuclear matter

    Get PDF
    An assessment of the magnitude of the rearrangement contribution to the Fermi energy and to the binding energy per particle is carried out in symmetric nuclear matter by extending the G-matrix framework. The restoration of the thermodynamic consistency or, equivalently, the fulfillment of the Hugenholtz-Van Hove theorem, is discussed.Comment: 14 pages, 3 figure

    Width of Radio-Loud and Radio-Quiet CMEs

    Full text link
    In the present paper we report on the difference in angular sizes between radio-loud and radio-quiet CMEs. For this purpose we compiled these two samples of events using Wind/WAVES and SOHO/LASCO observations obtained during 1996-2005. It is shown that the radio-loud CMEs are almost two times wider than the radio-quiet CMEs (considering expanding parts of CMEs). Furthermore we show that the radio-quiet CMEs have a narrow expanding bright part with a large extended diffusive structure. These results were obtained by measuring the CME widths in three different ways.Comment: Solar Physic, in pres

    EIS/Hinode observations of Doppler flow seen through the 40 arcsec wide slit

    Get PDF
    The Extreme ultraviolet Imaging Spectrometer (EIS) on board Hinode is the first solar telescope to obtain wide slit spectral images that can be used for detecting Doppler flows in transition region and coronal lines on the Sun and to relate them to their surrounding small scale dynamics. We select EIS lines covering the temperature range 6x10^4 K to 2x10^6 K that give spectrally pure images of the Sun with the 40 arcsec slit. In these images Doppler shifts are seen as horizontal brightenings. Inside the image it is difficult to distinguish shifts from horizontal structures but emission beyond the image edge can be unambiguously identified as a line shift in several lines separated from others on their blue or red side by more than the width of the spectrometer slit (40 pixels). In the blue wing of He II, we find a large number of events with properties (size and lifetime) similar to the well-studied explosive events seen in the ultraviolet spectral range. Comparison with X-Ray Telescope (XRT) images shows many Doppler shift events at the footpoints of small X-ray loops. The most spectacular event observed showed a strong blue shift in transition region and lower corona lines from a small X-ray spot that lasted less than 7 min. The emission appears to be near a cool coronal loop connecting an X-ray bright point to an adjacent region of quiet Sun. The width of the emission implies a line-of-sight velocity of 220 km/s. In addition, we show an example of an Fe XV shift with a velocity about 120 km/s, coming from what looks like a narrow loop leg connecting a small X-ray brightening to a larger region of X-ray emission.Comment: 12 pages, 8 figures, to be published in Solar Physic

    Using an Ellipsoid Model to Track and Predict the Evolution and Propagation of Coronal Mass Ejections

    Full text link
    We present a method for tracking and predicting the propagation and evolution of coronal mass ejections (CMEs) using the imagers on the STEREO and SOHO satellites. By empirically modeling the material between the inner core and leading edge of a CME as an expanding, outward propagating ellipsoid, we track its evolution in three-dimensional space. Though more complex empirical CME models have been developed, we examine the accuracy of this relatively simple geometric model, which incorporates relatively few physical assumptions, including i) a constant propagation angle and ii) an azimuthally symmetric structure. Testing our ellipsoid model developed herein on three separate CMEs, we find that it is an effective tool for predicting the arrival of density enhancements and the duration of each event near 1 AU. For each CME studied, the trends in the trajectory, as well as the radial and transverse expansion are studied from 0 to ~.3 AU to create predictions at 1 AU with an average accuracy of 2.9 hours.Comment: 18 pages, 11 figure

    Quasi-Periodic Releases of Streamer Blobs and Velocity Variability of the Slow Solar Wind near the Sun

    Full text link
    We search for persistent and quasi-periodic release events of streamer blobs during 2007 with the Large Angle Spectrometric Coronagraph on the \textit{Solar and Heliospheric Observatory} and assess the velocity of the slow solar wind along the plasma sheet above the corresponding streamer by measuring the dynamic parameters of blobs. We find 10 quasi-periodic release events of streamer blobs lasting for three to four days. In each day of these events, we observe three-five blobs. The results are in line with previous studies using data observed near the last solar minimum. Using the measured blob velocity as a proxy for that of the mean flow, we suggest that the velocity of the background slow solar wind near the Sun can vary significantly within a few hours. This provides an observational manifestation of the large velocity variability of the slow solar wind near the Sun.Comment: 14 pages, 5 figures, accepted by Soalr Physic

    Streamer Wave Events Observed in Solar Cycle 23

    Full text link
    In this paper we conduct a data survey searching for well-defined streamer wave events observed by the Large Angle and Spectrometric Coronagraph (LASCO) on-board the Solar and Heliospheric Observatory (SOHO) throughout Solar Cycle 23. As a result, 8 candidate events are found and presented here. We compare different events and find that in most of them the driving CMEs ejecta are characterized by a high speed and a wide angular span, and the CME-streamer interactions occur generally along the flank of the streamer structure at an altitude no higher than the bottom of the field of view of LASCO C2. In addition, all front-side CMEs have accompanying flares. These common observational features shed light on the excitation conditions of streamer wave events. We also conduct a further analysis on one specific streamer wave event on 5 June 2003. The heliocentric distances of 4 wave troughs/crests at various exposure times are determined; they are then used to deduce the wave properties like period, wavelength, and phase speeds. It is found that both the period and wavelength increase gradually with the wave propagation along the streamer plasma sheet, and the phase speed of the preceding wave is generally faster than that of the trailing ones. The associated coronal seismological study yields the radial profiles of the Alfv\'en speed and magnetic field strength in the region surrounding the streamer plasma sheet. Both quantities show a general declining trend with time. This is interpreted as an observational manifestation of the recovering process of the CME-disturbed corona. It is also found that the Alfv\'enic critical point is at about 10 R_\odot where the flow speed, which equals the Alfv\'en speed, is \sim 200 km s1^{-1}

    TomograPy: A Fast, Instrument-Independent, Solar Tomography Software

    Full text link
    Solar tomography has progressed rapidly in recent years thanks to the development of robust algorithms and the availability of more powerful computers. It can today provide crucial insights in solving issues related to the line-of-sight integration present in the data of solar imagers and coronagraphs. However, there remain challenges such as the increase of the available volume of data, the handling of the temporal evolution of the observed structures, and the heterogeneity of the data in multi-spacecraft studies. We present a generic software package that can perform fast tomographic inversions that scales linearly with the number of measurements, linearly with the length of the reconstruction cube (and not the number of voxels) and linearly with the number of cores and can use data from different sources and with a variety of physical models: TomograPy (http://nbarbey.github.com/TomograPy/), an open-source software freely available on the Python Package Index. For performance, TomograPy uses a parallelized-projection algorithm. It relies on the World Coordinate System standard to manage various data sources. A variety of inversion algorithms are provided to perform the tomographic-map estimation. A test suite is provided along with the code to ensure software quality. Since it makes use of the Siddon algorithm it is restricted to rectangular parallelepiped voxels but the spherical geometry of the corona can be handled through proper use of priors. We describe the main features of the code and show three practical examples of multi-spacecraft tomographic inversions using STEREO/EUVI and STEREO/COR1 data. Static and smoothly varying temporal evolution models are presented.Comment: 21 pages, 6 figures, 5 table

    Reconstructing the 3-D Trajectories of CMEs in the Inner Heliosphere

    Full text link
    A method for the full three-dimensional (3-D) reconstruction of the trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations Observatory (STEREO) data is presented. Four CMEs that were simultaneously observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and Behind STEREO satellites were analysed. These observations were used to derive CME trajectories in 3-D out to ~15Rsun. The reconstructions using COR1/2 data support a radial propagation model. Assuming pseudo-radial propagation at large distances from the Sun (15-240Rsun), the CME positions were extrapolated into the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in the different fields-of-view. It was found that CMEs slower than the solar wind were accelerated, while CMEs faster than the solar wind were decelerated, with both tending to the solar wind velocity.Comment: 17 pages, 10 figures, 1 appendi

    Large-space shell-model calculations for light nuclei

    Full text link
    An effective two-body interaction is constructed from a new Reid-like NNNN potential for a large no-core space consisting of six major shells and is used to generate the shell-model properties for light nuclei from AA=2 to 6. (For practical reasons, the model space is partially truncated for AA=6.) Binding energies and other physical observables are calculated and compare favorably with experiment.Comment: prepared using LaTex, 21 manuscript pages, no figure

    Prediction Space Weather Using an Asymmetric Cone Model for Halo CMEs

    Full text link
    Halo coronal mass ejections (HCMEs) are responsible of the most severe geomagnetic storms. A prediction of their geoeffectiveness and travel time to Earth's vicinity is crucial to forecast space weather. Unfortunately coronagraphic observations are subjected to projection effects and do not provide true characteristics of CMEs. Recently, Michalek (2006, {\it Solar Phys.}, {\bf237}, 101) developed an asymmetric cone model to obtain the space speed, width and source location of HCMEs. We applied this technique to obtain the parameters of all front-sided HCMEs observed by the SOHO/LASCO experiment during a period from the beginning of 2001 until the end of 2002 (solar cycle 23). These parameters were applied for the space weather forecast. Our study determined that the space speeds are strongly correlated with the travel times of HCMEs within Earth's vicinity and with the magnitudes related to geomagnetic disturbances
    corecore